Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries

نویسندگان

  • Ryon M. Bateman
  • Michael D. Sharpe
  • Justin E. Jagger
  • Christopher G. Ellis
چکیده

INTRODUCTION The microcirculation supplies oxygen (O2) and nutrients to all cells with the red blood cell (RBC) acting as both a deliverer and sensor of O2. In sepsis, a proinflammatory disease with microvascular complications, small blood vessel alterations are associated with multi-organ dysfunction and poor septic patient outcome. We hypothesized that microvascular autoregulation-existing at three levels: over the entire capillary network, within a capillary and within the erythrocyte-was impaired during onset of sepsis. This study had three objectives: 1) measure capillary response time within hypoxic capillaries, 2) test the null hypothesis that RBC O2-dependent adenosine triphosphate (ATP) efflux was not altered by sepsis and 3) develop a framework of a pathophysiological model. METHODS This was an animal study, comparing sepsis with control, set in a university laboratory. Acute hypotensive sepsis was studied using cecal ligation and perforation (CLP) with a 6-hour end-point. Rat hindlimb skeletal muscle microcirculation was imaged, and capillary RBC supply rate (SR = RBC/s), RBC hemoglobin O2 saturation (SO2) and O2 supply rate (qO2 = pLO2/s) were quantified. Arterial NOx (nitrite + nitrate) and RBC O2-dependent ATP efflux were measured using a nitric oxide (NO) analyzer and gas exchanger, respectively. RESULTS Sepsis increased capillary stopped-flow (p = 0.001) and increased plasma lactate (p < 0.001). Increased plasma NOx (p < 0.001) was related to increased capillary RBC supply rate (p = 0.027). Analysis of 30-second SR-SO2-qO2 profiles revealed a shift towards decreased (p < 0.05) O2 supply rates in some capillaries. Moreover, we detected a three- to fourfold increase (p < 0.05) in capillary response time within hypoxic capillaries (capillary flow states where RBC SO2 < 20 %). Additionally, sepsis decreased the erythrocyte's ability to respond to hypoxic environments, as normalized RBC O2-dependent ATP efflux decreased by 62.5 % (p < 0.001). CONCLUSIONS Sepsis impaired microvascular autoregulation at both the individual capillary and erythrocyte level, seemingly uncoupling the RBC acting as an "O2 sensor" from microvascular autoregulation. Impaired microvascular autoregulation was manifested by increased capillary stopped-flow, increased capillary response time within hypoxic capillaries, decreased capillary O2 supply rate and decreased RBC O2-dependent ATP efflux. This loss of local microvascular control was partially off-set by increased capillary RBC supply rate, which correlated with increased plasma NOx.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Decreased Oxygen Supply on Skeletal Muscle Oxygenation and Oxygen Consumption during Sepsis: Role of Heterogeneous Capillary Spacing and Blood Flow

One of the main aspects of the initial phase of the septic inflammatory response to a bacterial infection is abnormal microvascular perfusion, including decreased functional capillary density (FCD) and increased blood flow heterogeneity. On the other hand, one of the most important phenomena observed in the later stages of sepsis is an increased dependence of tissue O 2 utilization on the conve...

متن کامل

Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow.

One of the main aspects of the initial phase of the septic inflammatory response to a bacterial infection is abnormal microvascular perfusion, including decreased functional capillary density (FCD) and increased blood flow heterogeneity. On the other hand, one of the most important phenomena observed in the later stages of sepsis is an increased dependence of tissue O(2) utilization on the conv...

متن کامل

36th International Symposium on Intensive Care and Emergency Medicine

Introduction: A hallmark of sepsis is early onset microvascular dysfunction. However, the mechanism responsible for maldistribution of capillary blood flow is not understood. Evidence suggests red blood cells (RBC) can sense local oxygen (O2) conditions and signal the vasculature, via adenosine triphosphate (ATP), to increase capillary flow. We hypothesized that sepsis impaired microvascular au...

متن کامل

Effect of a maldistribution of microvascular blood flow on capillary O2 extraction in sepsis

Inherent in the remote organ injury caused by sepsis is a profound maldistribution of microvascular blood flow. Using a 24-h rat cecal ligation and perforation model of sepsis, we studied O(2) transport in individual capillaries of the extensor digitorum longus (EDL) skeletal muscle. We hypothesized that erythrocyte O(2) saturation (SO(2)) levels within normally flowing capillaries would provid...

متن کامل

Vitamin C and Microvascular Dysfunction in Systemic Inflammation

Sepsis, life-threatening organ dysfunction caused by a dysfunctional host response to infection, is associated with high mortality. A promising strategy to improve the outcome is to inject patients intravenously with ascorbate (vitamin C). In animal models of sepsis, this injection improves survival and, among others, the microvascular function. This review examines our recent work addressing a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2015